3.449 \(\int \frac {\sqrt {9+4 x^2}}{x^3} \, dx\)

Optimal. Leaf size=39 \[ -\frac {\sqrt {4 x^2+9}}{2 x^2}-\frac {2}{3} \tanh ^{-1}\left (\frac {1}{3} \sqrt {4 x^2+9}\right ) \]

[Out]

-2/3*arctanh(1/3*(4*x^2+9)^(1/2))-1/2*(4*x^2+9)^(1/2)/x^2

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {266, 47, 63, 207} \[ -\frac {\sqrt {4 x^2+9}}{2 x^2}-\frac {2}{3} \tanh ^{-1}\left (\frac {1}{3} \sqrt {4 x^2+9}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[9 + 4*x^2]/x^3,x]

[Out]

-Sqrt[9 + 4*x^2]/(2*x^2) - (2*ArcTanh[Sqrt[9 + 4*x^2]/3])/3

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\sqrt {9+4 x^2}}{x^3} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {\sqrt {9+4 x}}{x^2} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {9+4 x^2}}{2 x^2}+\operatorname {Subst}\left (\int \frac {1}{x \sqrt {9+4 x}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {9+4 x^2}}{2 x^2}+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{-\frac {9}{4}+\frac {x^2}{4}} \, dx,x,\sqrt {9+4 x^2}\right )\\ &=-\frac {\sqrt {9+4 x^2}}{2 x^2}-\frac {2}{3} \tanh ^{-1}\left (\frac {1}{3} \sqrt {9+4 x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 37, normalized size = 0.95 \[ -\frac {\sqrt {4 x^2+9}}{2 x^2}-\frac {2}{3} \tanh ^{-1}\left (\sqrt {\frac {4 x^2}{9}+1}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[9 + 4*x^2]/x^3,x]

[Out]

-1/2*Sqrt[9 + 4*x^2]/x^2 - (2*ArcTanh[Sqrt[1 + (4*x^2)/9]])/3

________________________________________________________________________________________

fricas [A]  time = 1.00, size = 57, normalized size = 1.46 \[ -\frac {4 \, x^{2} \log \left (-2 \, x + \sqrt {4 \, x^{2} + 9} + 3\right ) - 4 \, x^{2} \log \left (-2 \, x + \sqrt {4 \, x^{2} + 9} - 3\right ) + 3 \, \sqrt {4 \, x^{2} + 9}}{6 \, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x^2+9)^(1/2)/x^3,x, algorithm="fricas")

[Out]

-1/6*(4*x^2*log(-2*x + sqrt(4*x^2 + 9) + 3) - 4*x^2*log(-2*x + sqrt(4*x^2 + 9) - 3) + 3*sqrt(4*x^2 + 9))/x^2

________________________________________________________________________________________

giac [A]  time = 1.21, size = 43, normalized size = 1.10 \[ -\frac {\sqrt {4 \, x^{2} + 9}}{2 \, x^{2}} - \frac {1}{3} \, \log \left (\sqrt {4 \, x^{2} + 9} + 3\right ) + \frac {1}{3} \, \log \left (\sqrt {4 \, x^{2} + 9} - 3\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x^2+9)^(1/2)/x^3,x, algorithm="giac")

[Out]

-1/2*sqrt(4*x^2 + 9)/x^2 - 1/3*log(sqrt(4*x^2 + 9) + 3) + 1/3*log(sqrt(4*x^2 + 9) - 3)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 41, normalized size = 1.05 \[ -\frac {2 \arctanh \left (\frac {3}{\sqrt {4 x^{2}+9}}\right )}{3}-\frac {\left (4 x^{2}+9\right )^{\frac {3}{2}}}{18 x^{2}}+\frac {2 \sqrt {4 x^{2}+9}}{9} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*x^2+9)^(1/2)/x^3,x)

[Out]

-1/18/x^2*(4*x^2+9)^(3/2)+2/9*(4*x^2+9)^(1/2)-2/3*arctanh(3/(4*x^2+9)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 2.81, size = 35, normalized size = 0.90 \[ \frac {2}{9} \, \sqrt {4 \, x^{2} + 9} - \frac {{\left (4 \, x^{2} + 9\right )}^{\frac {3}{2}}}{18 \, x^{2}} - \frac {2}{3} \, \operatorname {arsinh}\left (\frac {3}{2 \, {\left | x \right |}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x^2+9)^(1/2)/x^3,x, algorithm="maxima")

[Out]

2/9*sqrt(4*x^2 + 9) - 1/18*(4*x^2 + 9)^(3/2)/x^2 - 2/3*arcsinh(3/2/abs(x))

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 25, normalized size = 0.64 \[ -\frac {2\,\mathrm {atanh}\left (\frac {2\,\sqrt {x^2+\frac {9}{4}}}{3}\right )}{3}-\frac {\sqrt {x^2+\frac {9}{4}}}{x^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*x^2 + 9)^(1/2)/x^3,x)

[Out]

- (2*atanh((2*(x^2 + 9/4)^(1/2))/3))/3 - (x^2 + 9/4)^(1/2)/x^2

________________________________________________________________________________________

sympy [A]  time = 1.67, size = 24, normalized size = 0.62 \[ - \frac {2 \operatorname {asinh}{\left (\frac {3}{2 x} \right )}}{3} - \frac {\sqrt {1 + \frac {9}{4 x^{2}}}}{x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*x**2+9)**(1/2)/x**3,x)

[Out]

-2*asinh(3/(2*x))/3 - sqrt(1 + 9/(4*x**2))/x

________________________________________________________________________________________